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Abstract: OCT is a popular cross-sectional microscale imaging modality in 
medicine and biology. While structural imaging using OCT is a mature 
technology in many respects, flow and motion estimation using OCT 
remains an intense area of research. In particular, there is keen interest in 
maximizing information extraction from the complex-valued OCT signal. 
Here, we introduce a Bayesian framework into the data workflow in OCT-
based velocimetry. We demonstrate that using prior information in this 
Bayesian framework can significantly improve velocity estimate precision 
in a correlation-based, model-based framework for Doppler and transverse 
velocimetry. We show results in calibrated flow phantoms as well as in vivo 
in a Drosophila melanogaster (fruit fly) heart. Thus, our work improves 
upon the current approaches in terms of improved information extraction 
from the complex-valued OCT signal. 

©2015 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (000.5490) Probability theory, 
stochastic processes, and statistics; (110.4153) Motion estimation and optical flow; (170.3880) 
Medical and biological imaging; (290.5820) Scattering measurements; (030.6140) Speckle. 

References and links 

1. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography 
today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014). 

2. B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley & Sons, Inc., New York, 1976). 
3. Y. Imai and K. Tanaka, “Direct velocity sensing of flow distribution based on low-coherence interferometry,” J. 

Opt. Soc. Am. A 16(8), 2007–2012 (1999). 
4. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” 

Opt. Express 20(20), 22262–22277 (2012). 
5. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT 

methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012). 
6. X. Liu, Y. Huang, J. C. Ramella-Roman, S. A. Mathews, and J. U. Kang, “Quantitative transverse flow 

measurement using optical coherence tomography speckle decorrelation analysis,” Opt. Lett. 38(5), 805–807 
(2013). 

7. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow 
velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E. 88(4), 042312 (2013). 

8. B. K. Huang and M. A. Choma, “Resolving directional ambiguity in dynamic light scattering-based transverse 
motion velocimetry in optical coherence tomography,” Opt. Lett. 39(3), 521–524 (2014). 

9. B. K. Huang, U. A. Gamm, V. Bhandari, M. K. Khokha, and M. A. Choma, “Three-dimensional, three-vector-
component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence 
tomography,” Biomed. Opt. Express 6(9), 3515–3538 (2015). 

10. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of State Calculations 
by Fast Computing Machines,” J. Chem. Phys. 21(6), 1087–1092 (1953). 

11. M. Plummer, “JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling ” in 
Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), F. K. Hornik, 
ed. (Technische Universität Wien, Vienna, Austria, 2003). 

12. M. Steyvers, “MATJAGS: a Matlab interface for JAGS,” (2011), 
http://psiexp.ss.uci.edu/research/programs_data/jags/. 

#241837 Received 14 Oct 2015; revised 14 Oct 2015; accepted 20 Oct 2015; published 12 Nov 2015 
(C) 2015 OSA 1 Dec 2015 | Vol. 6, No. 12 | DOI:10.1364/BOE.6.004796 | BIOMEDICAL OPTICS EXPRESS 4796 



13. A. Charnes, E. L. Frome, and P. L. Yu, “The Equivalence of Generalized Least Squares and Maximum 
Likelihood Estimates in the Exponential Family,” J. Am. Stat. Assoc. 71(353), 169–171 (1976). 

14. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-Time Two-Dimensional Blood Flow Imaging Using 
an Autocorrelation Technique,” IEEE Trans. Sonics and Ultrasonics 32(3), 458–464 (1985). 

15. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, 
“Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram 
segmentation,” Opt. Commun. 208(4-6), 209–214 (2002). 

16. S. Geman and C. Graffigne, “Markov Random Field Image Models and Their Applications to Computer Vision,” 
in International Congress of Mathematicians, A. M. Gleason, ed. (American Mathematical Society, Berkeley, 
California, 1986), pp. 1496–1517. 

1. Introduction 

Optical coherence tomography (OCT) is widely used for flow velocity estimation in 
biomedical applications [1]. Doppler-based approaches are a popular technique used to 
estimate velocity. However, traditional Doppler-OCT is only able to quantify axial flow 
velocities given that the Doppler signal is proportional to the dot product of the velocity 
vector and a unit vector along the optical axis. Several newer correlation-based approaches 
exploit models of the complex-valued OCT signal that incorporate physical models of 
scatterer motion into models of image formation. Modeling the complex-valued, time-varying 
correlation signal enables the extraction of flow velocity information orthogonal to the optical 
axis, including total flow speed [2–7] and directional velocimetry along three spatial axes [8, 
9]. 

As with most approaches to velocimetry, both Doppler and correlation-based approaches 
require multiple measurements taken in time in order to generate speed or velocity estimates. 
The need for multiple measurements increases total imaging time. Approaches that improve 
measurement precision while minimizing the need for repeated measures are therefore of 
keen interest in OCT-based velocimetry. Here, using an autocorrelation model of the time-
varying OCT signal, we perform axial and transverse velocimetry using a computational 
Bayesian approach known as Markov chain Monte Carlo (MCMC) [10]. The Bayesian 
MCMC approach generates flow velocity estimates along with their associated uncertainties. 
We further show that our model-based approach allows natural ways of incorporating prior 
knowledge of system and sample parameters, thereby improving estimation precision. Thus, 
the incorporation of prior knowledge using a Bayesian framework enables improved velocity 
estimation precision compared to prior non-parametric approaches to Doppler and 
correlation-based OCT velocimetry. These prior approaches are non-parametric in the sense 
that they do not assume an underlying noise model in its estimation procedure. Likewise, a 
Bayesian framework can enable fewer repeated measures (less data) without sacrificing 
velocity estimation precision. 

2. Brief description of the complex-valued OCT signal, the complex-valued 
autocorrelation signal, and directional dynamic light scattering OCT (DLS-OCT) 

For a scattering sample consisting of M scatterers, the time-varying complex-valued OCT 
signal at location ro and time t≥0 can be modeled as a complex phasor summation: 

 ( ) ( ) ( )( )
1

,
M

m
m

i t t dδ
=

′ ′ ′= −   psfr r r - r r r  (1a) 

 ( ) ( )0m mt t= +r r v  (1b) 

r is the Cartesian coordinate vector (x,y,z), r´ is a dummy variable used to exploit the sifting 
property of the Dirac delta function δ(r), psf(r) is the point spread function of the imaging 
system, and v is the temporally stationary vectorial velocity of the imaged scatterers. psf(r) is 
complex-valued and typically is modeled as a real-valued Gaussian amplitude envelope 
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modulated by a complex-valued fringe (Fig. 1). The fringe has the form exp(2jk[zo-zm(t)]), 
where t≥0, j = (−1)1/2, and k is the optical wavenumber in radians per unit distance. 

 

Fig. 1. (a) Model of the time-varying, complex-valued OCT signal i(r). Each particle in an 
ensemble of M identical, uniformly moving, randomly distributed particles contributes to i(r). 
The contribution is weighted by the point-spread function (psf), which is complex-valued in 
the z-axis and real-valued in the x- and y-axes. Typically, psf(y) = psf(x). For clarity, only a 
subset of the M scatterers are shown. The scatterers also undergo diffusion with a root mean 
squared displacement given by a diffusivity parameter D. (b) iz(t) is the axial response, that is, 
the complex-valued OCT signal along the z-axis. As shown in Eq. (2), autocorrelation of the 
complex-valued signal yields a complex-valued fringe as well as an amplitude envelope. Here, 
the operator indicates correlation. The frequency of the fringe is given by the Doppler shift 
imparted by the axial component of the moving scatterers. The amplitude envelope reproduces 
the shape of the point-spread function envelope. The width of the envelope is modulated by the 
axial speed (vz), that is, the magnitude of the axial velocity. Assuming psf(y) = psf(x), the real-
valued response along the x- and y-axes is likewise an amplitude envelope with a width 
modulated by the total in-plane speed (vx

2 + vy
2)1/2. (c) In the case of purely diffusive motion of 

monodisperse scatterers in the axial direction, the magnitude of the autocorrelation of the 
complex-valued signal is an exponential decay. The characteristic decay time is inversely 
proportional to the particle diffusivity. For short periods of time (shown here), the signal may 
wander in a local neighborhood. Over time, the signal fills out speckle statistics in the complex 
plane. 

The evolution of i(r,t) in time is a stochastic process in the complex plane. If, however, 
the spatial distribution of particles is a white noise process, a functional form of the 
autocorrelation of i(r,t) can be written. If we assume that particle motion has a diffusive 
component and a linear translational component, the autocorrelation of i(r,t) can be modeled 
as [4]: 

 ( ) ( )
2 2 2 2 2

2
2 2 2

( , ) Re 2 e e 4x y z

xy z

v v v
G v k D

w w

τ ττ τ τ
 +

= − − −  
 

xp jk xp xpr  (2) 

τ is the autocorrelation lag, D is particle diffusivity, wxy is the 1/e2 beam radius in the x-y 
plane, wz is the 1/e2 longitudinal coherence length, and v is the vector component of v in a 
given Cartesian direction. We assume a Gaussian form of the axial and transverse point 
spread functions. Every parameter is an implied function of r. Several estimators (e.g. Kasai) 
focus on the exp(2jkvzτ) term since 2kvz represents the Doppler shift in units of radians per 
second. These estimators are limited to axial velocity estimation. By fitting the numerical 
autocorrelation of the complex-valued OCT signal to this model, the total speed (vx

2 + vy
2 + 

vz
2)1/2 of the flow can be determined as well as the axial velocity vz. This approach is called 

dynamic light scattering OCT (DLS-OCT) [4]. Further, if three frames of reference are 
recognized (i.e. sample [samp], scanner [scan], and detector [det]), if Eq. (2) is written in 
terms of vx,det = vx,scan-vx,samp, and if the signal is acquired at a series of different scan rates 
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vx,scan, vx,samp can be estimated (Fig. 2). We term this approach directional DLS-OCT. Hence, 
the model can be rewritten as [8]: 

 ( )
( )( )2 2

,

2 2
( , , ) e 2 e

x x scan
scan
x

xy

v v C
G v R v

w

τ
τ τ

 − + = − 
 
 

xp jk xpr  (3) 

C is the baseline decorrelation rate resulting from velocity components orthogonal to the scan 
bias direction and from diffusion. Note that we simplified our model by lumping diffusion 
together with velocity-based decorrelation, even though diffusion contributes as a single 
exponential decorrelation. Nevertheless, the interpretation of Eq. (3) is that as vx,scan is varied, 
the magnitude of the decorrelation rate is modulated (Fig. 2). The magnitude of decorrelation 
is minimized when flow velocity matches scan velocity in the x-direction, yielding an 
estimate of vx,samp. While Eq. (3) does not explicitly recover an estimate of scatterer 
diffusivity, Eq. (3) in conjunction with a scan bias modulation protocol affords a mechanism 
for separating a single transverse velocity component (i.e. vx) from all other sources of 
translational and diffusive motion. Because our model acknowledges both translational and 
diffusive scatterer motion, we chose to use the Lee, et al. nomenclature of DLS-OCT [4]. 

 

Fig. 2. Left panel: The measured velocity is the difference between flow velocity in the object 
being imaged (vflow) and the velocity of the bean scanner that defects the imaging beam (vscan). 
Varying vscan breaks a symmetry that is otherwise present in DLS-OCT. Symmetry is broken 
because vmeas is different when sign of vscan is flipped. Moreover, the velocity component along 
the x-axis (or y-axis) can be estimated by exploiting the fact that vmeas is minimized when vflow 
= vscan. Right panel: Value of the autocorrelation of the complex-valued OCT signal as a 
function of time lag (τ) and axial location (z). Data is from a calibrated flow phantom described 
in Section 4.1. Here, the direction of vscan defines the x-axis, and vflow is nominally parallel to 
the x-axis. Decorrelation times are longer (i.e. rates of decorrelation are slower) as vscan 
approaches vflow. Note that the fringe frequency (Doppler shift) varies slowly with scan bias 
speed, indicating a small beam scanning-induced Doppler shift. By analyzing the total Doppler 
shift as a function of scan bias velocity, we estimate that the scanner-induced Doppler shift 
equivalent to −16.4 μm/s per 1 mm/s of scan velocity. 

3. Bayesian framework, modeling, and analysis 

3.1 General framework and noise model 

The goal of OCT velocimetry is to generate spatially indexed velocity maps. Bayesian 
analysis can improve upon existing approaches to OCT velocimetry by (a) providing 
probability density functions that represents the uncertainty in velocity estimates and (b) 
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giving a framework for the incorporation of prior information. One expression of Bayes’ rule 
states that 

 ( ) ( ) ( )
( )

P data P
P data

P data

θ θ
θ =  (4a) 

 ( ) ( ) ( )P data P data P dθ θ θ=   (4b) 

Here, θ is a vector of the estimated parameters, P(θ |data) is the posterior distribution, 
P(data|θ) is the likelihood function, P(θ) is the prior distribution, and P(data) is a 
normalization factor that ensures that the posterior distribution integrates to unity. The prior 
distribution represents prior knowledge about the probability of parameter values in the 
absence of data. The likelihood function is the statistical model of noisy data. It models how 
the noisy data is dependent on the parameters. Moreover, in the context of maximum 
likelihood estimation, P(data|θ) viewed as a function of θ is called the likelihood function 

L(θ) that is used to estimate 
( )arg max

MLE

L θ
θ

θ
= . The posterior distribution represents an 

estimate of the parameters given the data. The dimensionality of the posterior distribution is 
equal to the number of parameters in θ . While the full posterior distribution can be difficult 
to visualize, it is useful to obtain the one-dimensional function P(θn |data), the marginal 
distribution, that represents the probability density function for a single parameter θn given 
the data: 

 ( ) ( )
c
n

c
n nP data P data d

θ

θ θ θ=   (5a) 

 c
n nθ θ θ=    (5b) 

Here, the posterior distribution is marginalized over all parameters except θn. The widths of 
the one-dimensional probability density function P(θn |data) is an intuitive measure of the 
uncertainty θn. 

In our approach we estimate the posterior probability in a pointwise manner. That is, we 

estimate ( )P data θ
or

 at individual locations ro. We assume a homoscedastic Gaussian noise 

model for the likelihood function ( )P data θ
or

. Specifically, 

 ( )
( ) ( )
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 { }2
,, , ,x xyR v w Cθ σ=  (6b) 

Here, σ2 is the variance of the noise in the data. 

Note that the exponent of ( )P data θ
or

 is a function of the model of the complex 

autocorrelation function G (Eqs. (2) or (3)). As a consequence, regardless of the simplicity of 
the form of the prior distribution P(θ), evaluating the integral in Eq. (4b) to estimate P(data) 
is a non-trivial task. As such, we used JAGS (Just Another Gibbs Sampler [11]) in MATLAB 

(MATJAGS [12]) to numerically integrate Eq. (4b) and estimate ( )P dataθ
or

. We used a 

Markov chain Monte Carlo (MCMC) approach [10] in MATJAGS for numerical integration. 
Each MCMC run was of length 104, a histogram of the parameters of which gives the 
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estimate of the posterior distribution. MCMC is a numerical integration technique that 
commonly is used to obtain posterior distributions in numerical Bayesian analysis. Even 
though a mathematical expression for the posterior distribution can be defined, the 
denominator of that expression (i.e. P(data)), is in general very difficult to directly calculate. 
MCMC implicitly estimates P(data) using a numerical approach. MCMC executes a random 
walk across the parameter space in proportion to the posterior density. In this way, the 
Markov chain is drawn towards regions in the parameter space with high posterior probability 
and visits the lower probability regions proportionally less often. Hence, the number of times 
that the Markov chain visits each location in the parameter space gives an estimate of the 
posterior probability. In our experience, MCMC run lengths of 103 typically reach steady 
state. We used run lengths of 104 to ensure that not reaching steady state is a remote 
possibility. 

3.2 Incorporation of prior information through the use of an adaptive hyperprior 

In laminar flow as well as with other well-behaved motions, a continuity argument suggests 
that the parameter values of neighboring locations are similar. One way to formally 
incorporate such a continuity argument into Bayes’ rule (Eq. (4)) is through an adaptive 
hyperprior. If P(θ) is a Gaussian distribution, then a hyperprior defines the Gaussian 
distribution not in terms of fixed values for its mean and variance but rather the mean and 
variances are themselves taken as random variables from another distribution called the 
hyperprior distribution. In our case the hyperprior itself is a Gaussian distribution. At current 
(curr) location ro, we use the posterior distribution at a neighboring (neigh) location as a 
hyperprior on the prior distribution at ro. Using a hyperprior, then, Bayes’ rule (Eqs. (4a) and 
(4b)) expands to: 

 ( ) ( ) ( ) ( )
( )

,
curr curr curr neigh neigh

curr neigh curr
curr

P data P P
P data

P data

θ θ θ θ
θ θ =  (7a) 

 ( ) ( ) ( ) ( )curr curr curr curr neigh neigh curr neighP data P data P P d dθ θ θ θ θ θ=   (7b) 

Likewise, the one-dimensional function P(θn,curr|datacurr) that represents the probability 
density function for a single parameter θn,curr given the data is 

 ( ) ( ), ,, c
curr n curr curr curr curr curr n neighP data P data data d dθ θ θ θ=   (8a) 

 , ,
c

curr curr n curr nθ θ θ=      (8b) 

P(θcurr |θneigh) is a Gaussian distribution centered at θneigh, the value of which is governed by 
the hyperprior distribution P(θneigh). The prior and hyperprior distributions have the same 
width, given by the width of the posterior of the neighbor. Hence, by progressively moving 
across an image, adapting the hyperprior on the mean of the prior at the current location to the 
posterior distribution at the neighboring location, we can reduce uncertainty in our velocity 
estimates. 

Our use of the uninformative hyperprior approach to establish a performance baseline for 
the adaptive hyperprior approach is supported by the following argument. As discussed 
above, a maximum likelihood estimate (MLE) is the argmax with respect to θ of the 
likelihood function. In the case of an uninformative hyperprior, P(θ) is a very broad Gaussian 
distribution, meaning that the posterior distribution P(θ | data) is essentially determined by the 
likelihood function. Additionally, maximum likelihood estimation using a homoscedastic 
Gaussian noise model is equivalent to least squares regression fitting [13]. Thus, the 
uninformative hyperprior case reflects information used in two widely used estimation 
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processes (MLE and least squares), supporting its use as a baseline for evaluating 
performance of the adaptive hyperprior Bayesian approach. 

4. OCT imaging and Kasai Doppler processing 

4.1 OCT data collection 

We used a λo = 1325 nm spectral domain OCT system (Thorlabs Telesto) to image a 
rectangular (0.5 x 5 mm) flow channel containing an aqueous suspension of 100-nm diameter 
polystyrene beads with 0.1% Tween to prevent bead aggregation. Two vector component 
flow velocity estimates (vx,vz) were generated along one spatial dimension (z-axis). The peak 
total speed was estimated to be −2.3 mm/s based on the bulk flow rate of the syringe pump 
and the flow channel geometry. The scan direction was nominally parallel to the flow 
direction (the x-direction). The A-scan rate was 28 kHz. For all scan biases, scanning was 
performed over a fixed range of 250 μm; as such, the faster scan velocities result in fewer 
data points. Wild-type fruit fly (Drosophila melanogaster) M-mode images were collected at 
a 28 kHz A-scan rate. One vector component heart wall velocity estimates (vz) were generated 
along one spatial dimension (z-axis). 

4.2 Doppler estimation using the Kasai autocorrelation algorithm 

The Kasai method [14, 15] estimates the Doppler frequency through Taylor expansion and 
algebraic manipulations of a model of the autocorrelation signal (e.g. Eq. (2)). In doing so, the 
phase is estimated through the ratio of the real and imaginary components of a single-lag 
autocorrelation calculation. The Doppler frequency is then approximated by the change in 
phase after the first time lag: 

 1
Im{ ( , )}1

tan
Re{ ( , )}

lag
dop

lag lag

G

G

τ
ω

τ τ
−=

r

r
 (9) 
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5. Results 

5.1 Doppler axial velocimetry in a calibrated flow phantom 

 

Fig. 3. Axial velocity (vz) estimation using the time-varying signals acquired at a scan bias 
velocity of −1.7 mm/s. (a) Representative B-scan at a single scan bias velocity. (b) Kasai 
estimate of the axial velocity, (c) Bayesian analysis with an uninformative prior and (d) an 
adaptive hyperprior. (e) A sample uncertainty comparison at the center of the channel (blue = 
uninformative prior, green = adaptive hyperprior, red = Kasai). Here, the posterior distribution 
of the axial velocity P(vz|data) is defined in Eqs. (4) and (7). 

The use of prior information through adaptive hyperpriors in a Bayesian framework improved 
Doppler-based velocity estimation (Fig. 3). We estimated flow velocity profiles using the 
standard Kasai Doppler estimator (Fig. 3(b)), using Bayesian analysis with a wide prior 
distribution (uninformative hyperprior; Fig. 3(c)), and using Bayesian analysis with adaptive 
hyperpriors (Fig. 3(d)). For our Bayesian analysis, Doppler frequencies were estimated by 
fitting the data to an equation that has the general form of Eq. (2) but that combines the last 
two terms on the right-hand side into a single Gaussian decay term. Since every possible axial 
velocity value at each lateral axial location has an associated probability (i.e. the posterior 
distribution P(vζ | data)), the Bayesian analysis results are displayed as heat maps. The width 
of the posterior distribution at each lateral axial location is an intuitive measure of the 
credibility of the velocity estimation process. These widths often are referred to as credible 
intervals (CIs). Comparing credible intervals demonstrates that the adaptive hyperprior 
significantly improves axial velocity estimation. If we define a reduction in uncertainty 
parameter 

 95% 95%

95%

100%,
UHP AHP

UHP

CI CI
RU

CI

−
= ×  (10) 
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there is a RU = 70% reduction in uncertainty attributable to the incorporation of prior 
information through an adaptive hyperprior. Here, 95%

UHPCI  and 95%
AHPCI  are the 95% CIs for 

using uninformative hyperpriors and adaptive hyperpriors, respectively. In the results in Fig. 
3, 95% 12UHPCI mμ=  and 95% 6.3 /AHPCI m sμ= . 

As an additional comparison between the Bayesian estimates and Kasai Doppler estimate, 
we collapsed the posterior probability density functions to flow velocity profiles and 
compared them to Kasai Doppler profiles (Fig. 4). The posterior probability density functions 
were collapsed using a centroid calculation: 

 ( )|z z z zv v P v data dv=   (11) 

The three Doppler flow velocity profiles are almost indistinguishable from each other (Fig. 
4(a)). We additionally fit each flow velocity profile to a parabola. The three fits also are 
almost indistinguishable from each other (Fig. 4(b)). These results indicate that the posterior 
probability density functions contain information to generate flow profiles that are similar to 
those generated by a traditional Doppler estimator. We compared the collapsed posterior 
probability density functions to Kasai Doppler estimates because the Kasai estimator does not 
yield density functions that can be compared to full posterior probability density functions. 

 

Fig. 4. Doppler flow velocity profiles generated using the Kasai Doppler estimator and by 
centroiding the posterior probability density functions for the uninformative hyperprior (UHP) 
and adaptive hyperprior (AHP) estimators. The R2 values (minimum velocity values) for 
Kasai, UHP, and AHP parabolic fits are 0.989 (−0.221 mm/s), 0.991 (−0.225 mm/s), and 0.995 
(−0.224 mm/s), respectively. 

5.2 DLS-OCT total velocimetry in a calibrated flow phantom 

The use of prior information through adaptive hyperpriors in a Bayesian framework also 
improved two-component flow velocity vector estimation in directional DLS-OCT. We 
investigated improvement in estimation performance in the context of varying the number of 
repeated data acquisitions (ndata) and varying the number of different scan bias velocities used 
in the directional DLS-OCT scan protocol (nbias). Here, ndata indicates the number of images 
taken at each of nbias scan biases used in the directional DLS-OCT scan protocol. We 
estimated the directional flow profile of a phantom calibrated to a peak flow of −2.3 mm/s 
with a near-90 degree Doppler angle. We used nbias = 8 for fitting Eq. (3). to infer the flow 
velocity. Figure 2 shows the temporal autocorrelation of time-varying, complex-valued OCT 
signal across a calibrated flow phantom at different scan bias velocities. 

From the computed autocorrelation functions at 8 scan biases (nbias = 8), we then 
calculated the posterior distribution of the lateral flow velocity P(vx|data) and the axial flow 
velocity P(vz|data), based on Eqs. (4)-(8). We investigated whether an adaptive hyperprior 
could improve velocity estimation and the dependence of that improvement on ndata. Figure 5 
shows the Bayesian estimates of vx and vz profiles along the z-axis (depth) using ndata = 1 and 
nbias = 8 with uninformative and adaptive hyperpriors as well as using ndata = 10 and nbias = 8 
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with uninformative and adaptive hyperpriors. As with the Doppler results shown in Fig. 3, 
every possible axial location along the horizontal axis has an associated posterior probability 
density function of P(vx| data) or P(vz| data). As such, the data are displayed as heat maps. 
Overall, the magnitudes of the lateral and axial velocities correspond to a Doppler angle of 
96°, in close agreement with geometric estimates (95°). For ndata = 1, there is a relatively high 
uncertainty in the reconstruction, but using an adaptive hyperprior reduces this uncertainty. 
For estimating vx with ndata = 1, 95% 1.81mm/ sUHPCI =  and 95% 1.21mm/ sAHPCI = , giving RU = 

33%. Increasing the number of repeated data acquisitions significantly narrows credible 
intervals. For ndata = 10, 95% 0.58mm/ sUHPCI =  and 95% 0.40mm/ sAHPCI = , giving RU = 31%. the 

95% CIs were of widths ~0.58 mm/s and ~0.40 mm/s. For axial velocity estimation with ndata 
= 1, 95% 23 m/ sUHPCI μ= and 95% 15 m/ sAHPCI μ= , giving RU = 35%. For axial velocity estimation 

with ndata = 10, 95% 7.8 m/ sUHPCI μ=  and 95% 5.3 m/ sAHPCI μ= , giving RU = 32%. Thus, use of an 

adaptive hyperprior in DLS-OCT reduced uncertainties by approximately 30% in all of these 
cases. 

 

Fig. 5. Bayesian estimates of two-component flow velocity vectors: lateral flow velocity (vx) 
and axial velocity (vz). They were reconstructed using either an uninformative prior (i.e. very 
broad prior probability P(θ)) or an adaptive hyperprior (i.e. prior probability is defined by a 
neighboring posterior distribution). Using a larger sample size and incorporating neighboring 
information improves the precision. We define precision by the width of the posterior 
probability density function. Each row of subfigures uses the same color bar. The posterior 
distribution of the lateral velocity P(vx|data) and of the axial velocity P(vz|data) is defined in 
Eqs. (4) and (7). 
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Fig. 6. Comparison of adaptive hyperprior estimation when the estimation process begins on 
the left-hand side and moves right (left to right; green colormap) and when it begins on the 
right-hand side and moves left (right to left; blue colormap). The flow velocity profiles are 
similar in either case. Data are from the ndata = 1, nbias = 8 (second column in Fig. 5). The 
“merge” images are RGB color images in which the green channel is the left-to-right data and 
the blue channel is the right-to-left data. Cyan-appearing pixels in the “merge” images indicate 
a high degree of overlap between the left-to-right and right-to-left profiles. The left-to-right 
profile has a slight rightward shift and, likewise, the right-to-left profile has a slight leftward 
shift. 

Our adaptive hyperprior estimation process moves left-to-right (i.e. from low values of z 
to high values of z). That is, when estimating velocity at a particular location, prior 
information is pulled from the adjacent pixel to the left. The first location in the estimation 
process uses an uninformative prior. In order to investigate the influence of moving left-to-
right versus right-to-left during the estimation process, we generated velocity estimates in the 
ndata = 1, nbias = 8 case in Fig. 5 when moving in each direction (Fig. 6). The vx and vz velocity 
profiles were similar in each case. The velocity profiles were slightly spatially shifted from 
each other, suggesting a small spatial lag in the estimation process similar to that observed 
with a low-pass filter (e.g. moving average filter). 

Lastly, our beam waist estimates (derived from the autocorrelation signal as modeled in 
Eq. (3) are consistent with but not equal to the imaging system resolution (as determined from 
intensity images of sparsely distributed sub-resolution scatterers). The 1/e2 beam radius 
values estimated using the autocorrelation approach described in this manuscript were in the 
4.5 to 5 μm range. The 1/e2 beam radius as ascertained from imaging sub-resolution scatterers 
is ~7 μm. We hypothesize that the discrepancy may be due to the fact that the autocorrelation 
curves often have ripples and sidelobes that lead to non-Gaussian shapes to the 
autocorrelation curve. We also note that, for directional DLS-OCT, estimation of vx is driven 
by finding a value of vx that minimizes γ (1/γ is the intensity decorrelation time). In contrast, 
other methods require a more exact estimation of the beam radius because the beam radius 
serves as a constant of proportionality that relates estimated decorrelation time to scatterer 
translational speed. 

5.3 DLS-OCT total velocimetry using less data and few scan biases 

We next investigated the effects of using fewer scan bias velocities (nbias = 4) with no 
repeated data acquisition ndata = 1. We considered two sets of four scan bias velocities: the 
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fastest (−13.7, 13.7, −6.8, and 6.8 mm/s; Fig. 7) and the slowest (−3.4, 3.4, −1.7, and 1.7 
mm/s; Fig. 8) scan biases. These two sets can be thought of as representing two extremes of 
partitioning the data—either scanning at velocities close to the flow or far away. Once again, 
the adaptive hyperprior reduced uncertainty, with Table 1 summarizing the magnitude 
uncertainty reductions. 

In the case of the faster scan velocities, using only an uninformative prior gives 
reconstructions of relatively poor precision with the uncertainty in measurement being greater 
than the measurement itself. Using prior information, however, significantly improves 
precision (Fig. 7 and Table 1). In the case of the slowest scan velocities, Markov chains did 
not reach steady state and thus did not arrive at a stationary distribution. As a result, we could 
not reliably compare the improvement of using the hyperprior distribution. In order to reach 
steady state, we used beam waist as additional prior information in order to more tightly 
constrain the posterior distribution. Fixing the beam waist parameter value at 5 μm led to 
Markov chains reaching steady state and stationary posterior distribution estimates (Fig. 8), 
and use of an adaptive hyperprior also leads to improved estimation precision. 

Table 1. Improvements with fewer scan biases 

95% CI fastest biases slowest biases 
lateral axial lateral axial 

uninformative 
prior 

4510 μm/s 63 
μm/s 

2100 μm/s 14 μm/s 

adaptive 
hyperprior 

2270 μm/s 39 
μm/s 

1450 μm/s 10 
μm/s 

uncertainty 
reduction 

50% 38% 31% 29% 

Summary of results from using neighboring information via adaptive 
hyperpriors for the use of only four scan biases. CI widths are reported as 
the median across the channel due to a few extreme values. Note that for 
the slowest scan biases, prior information about the beam waist had to be 
included. 

 

Fig. 7. Bayesian estimates of DLS parameters using 1 sample and the 4 fastest scan bias 
velocities. The first column consists of results from an uninformative prior; the second, 
uninformative priors on all parameters except the lateral beam waist; and the third, adaptive 
hyperprior. Only the second column assumes a fixed beam waist of 5 μm. 
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Fig. 8. Bayesian estimates of DLS parameters using 1 sample and the 4 slowest scan bias 
velocities. 

5.4 Axial velocimetry of cardiac motion in Drosophila melanogaster (fruit fly) embryos 

In order to demonstrate the feasibility of our Bayesian approach in a biomedical context, we 
applied our method for improving the precision of Doppler velocity estimates of heart wall 
motion in Drosophila melanogaster (fruit fly) pre-pupae. Figure 9(a) shows the M-mode 
image of a wild-type fruit fly heart. In order to extract the Doppler signal from the heart wall, 
the walls were segmented using a tracking algorithm. Starting with an initial seeded spatial 
location manually chosen, the subsequent spatial location and the next time point was chosen 
based on the maximum intensity across the A-scan with a quadratic penalty for larger 
distances. To address non-stationarity, a short-time Fourier transform was calculated with a 
sliding Gaussian window with a full width at half maximum of 360 μs (10 data points). 
Squaring the magnitude of the windowed Fourier transform followed by inverse Fourier 
transformation gave an estimate of the autocorrelation signal as per the Wiener-Khinchin 
theorem. The autocorrelation signal was fit to the DLS model with a single decorrelation 
parameter capturing the effects of diffusion and translational decorrelation. The window was 
slid by the half width at half max to avoid overly double-counting data. Although we were 
interested in the axial velocity vz, the Bayesian framework we implemented requires analysis 
of the entirety of Eq. (3), which also incorporates information about lateral velocity. In the 
context of Bayesian analysis, one can estimate all the parameters required by the model, but 
integrate over estimates of non-essential parameters. In doing so, one is left with only 
parameters of interest, in this case, vz. 
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Fig. 9. Bayesian heart wall velocimetry in a Drosophila melanogaster pre-pupa. All horizontal 
axes are identical (time). (a) M-mode image of D. melanogaster heart. (b) Heart wall velocity 
trace (black) and 95% CI for Bayesian analysis using a broad uninformative prior. Note that CI 
plot is on a log scale. (c) Heart wall velocity trace (black) and 95% CI for Bayesian analysis 
using an adaptive hyperprior. (d) Reduction in uncertainty when using an adaptive hyperprior 
compared to a broad uninformative prior. The vertical axis is truncated at RU = 0. The 
uninformative prior occasionally outperformed the adaptive hyperprior (i.e. RU<0). These 
datapoints are highlighted in red. 

The uncertainty reduction was greatest for the adaptive hyperprior when the velocity 
profile varied slowly, while rapid movements during contraction and relaxation have more 
variable uncertainty reduction. This pattern of uncertainty reduction may be attributed to the 
intuitive notion that the slower the parameter variation, the more information the parameter 
estimates at one location are applicable to those of neighboring locations. Note that there 
were occasional instances where the uncertainty increased as a result of the incorporation of 
neighboring information (red points in Fig. 9(d)). This increase may be attributed to the fact 
that we also adapted the posterior distribution for the data variance parameter (σ2 in Eq. (6)). 
Hence, if the neighboring position significantly deviated from the model (a large σ2), then 
forcing the data at the current position to have a high variance about the model (even if the 
data suggest it should not) would allow the fit to vary widely in order to accommodate this 
larger variance. As such, the posterior distribution in the parameters may widen. The fact that 
an adaptive hyperprior does not categorically narrow CIs may be viewed as a desirable result. 
It is desirable because it suggests that if the data in the neighboring position has a high 
variance about the model (e.g., because of violation of stationarity), then the parameter 
estimates from that neighbor are less reliable than if the model tightly fit the data. This 
guardrail against inappropriate narrowing is reflected in a useful quality control rule: in cases 
where RU<0, CIs generated using an uninformative prior should be used in lieu of CIs 
generated using the adaptive hyperprior. 
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6. Conclusion and discussion 

We developed a Bayesian framework for OCT velocimetry that reduces uncertainty in 
velocity profile reconstructions in a calibrated phantom and in an important animal model of 
human disease. Here, uncertainty is defined as the width of the posterior distribution of the 
velocity parameter estimate (e.g. P(vx |data)). In this study, we used 95% CIs as a metric for 
posterior distribution width. Reduction in uncertainty in the Bayesian framework is 
accomplished through the incorporation of prior information. In particular, we have shown 
that spatially neighboring locations provide some information about the current location, 
under the assumption that spatial properties do not vary rapidly between neighbors. The 
rationale is that if we estimate the parameters in one location, we will have gained 
information about nearby locations, and our proposed adaptive hyperprior method is one way 
of parameterizing this information. A major decision was in how strongly we chose to use 
prior information from adjacent spatial locations to inform our next estimate. In principle, we 
could have set a more restrictive prior such that the posterior distribution of one location 
gives the prior distribution for the next location. Using neighboring information in this 
manner is conceptually similar to averaging and thus would lead to progressively narrower 
posterior distributions across the channel. Such narrowing is at odds with the fact that flow 
velocity is expected to slowly vary across an image. Rather, we used an adaptive hyperprior 
approach. The adaptive hyperprior approach uses the posterior distribution of one location to 
be the prior distribution of the hyperparameter of the next prior while keeping the variance 
the same. This approach avoids a gradual narrowing of the posterior distribution as velocity 
estimates are generated across the image data field of view. 

We believe that the primary advantage of the presented approach is the ability to 
incorporate prior information into a statistical framework for velocity estimation using 
simpler (e.g. Doppler) or more complex (e.g. directional DLS-OCT) models of the complex-
valued OCT signal. The Bayesian approach also yields credible intervals (CI) and posterior 
distributions (P(θ|data)) that assist in further interpreting velocity estimates. On that point, 
Kasai estimators do not give confidence or credible intervals. Thus, although Kasai is well-
established, it is not straightforward to compare Kasai to methods that yield confidence or 
credible intervals. 

We made a few assumptions in our overall estimation framework. These assumptions 
reduced the computational burden associated with Bayesian analysis. We believe that these 
assumptions are reasonable, although future work may focus on more detailed estimation 
models and OCT signal models. In terms the estimation model, we assumed a homoscedastic 
Gaussian noise model (i.e. constant noise variance across all autocorrelation lags). A more 
detailed heteroscedastic noise model would estimate a noise variance for each autocorrelation 
lag. Second, the deviations of the observed autocorrelation from the proposed model were 
assumed to be independent and identically distributed Gaussian, even though the uncertainties 
increase slowly with lag and are potentially correlated due to the fact that each lag calculation 
uses some overlapping data. To avoid the former issue, we restricted the number of lags to the 
first 15. Third, all prior distributions used in this study were assumed to be independent of 
each other. Fourth, in terms of using neighboring locations for prior information, our 
approach used immediately adjacent spatial locations as sources for priors. Although the 
immediate neighbor approach is straightforward, we note that there are more general 
approaches (e.g. Markov random fields [16]) that avoid the directionality (i.e. left-to-right or 
right-to-left) of the immediate neighbor approach. In terms of the model of the OCT signal, 
we assumed that the velocity gradient is zero. Future work may focus on using signal models 
that assume a non-zero gradient as in Weiss, et al. [7]. 

Analysis reported in Fig. 2 revealed a small scanner-induced Doppler shift. This scanner-
induced Doppler shift could be incorporated into the velocity estimation process by 
expanding the vz term in exp(2jkvzτ) in Eq. (3) to vz + mvx,scan. Here, m is scanner-induced 
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Doppler shift per unit scan velocity. By analyzing the total Doppler shift as a function of scan 
bias velocity in Fig. 2, we estimate that the scanner-induced Doppler shift m is −16.4 μm/s per 
1 mm/s of scan velocity. However, our expectation was that the scanner-induced Doppler 
shift does not significantly impact axial velocity measurements. Our expectation was based in 
the fact that, across all scan biases vx,scan, the average scanner-induced Doppler shift is zero. 
That is, the average value of (vz + mvx,scan) taken across all scan biases is vz because the set of 
scan bias values used is symmetric around zero. Our expectation is supported by two 
observations. First, axial flow velocities at the edges of the tube are zero or near-zero in the 
various analyses performed. If the scanner-induced Doppler shift imparted a significant 
velocity bias, this bias would be expected to be present in velocity estimates of stationary 
scatterers. Second, the ratio of vz and vx is consistent with the estimated angular tilt of the 
capillary tube based on intensity OCT imaging. 

As it relates to transverse velocimetry, the salient feature of Eq. (3) is the relationship 
between the rate of amplitude signal decorrelation and the scan bias velocity. Varying the 
scan bias velocity modulates the decorrelation rate in a predictable manner and thus provides 
a baseline set of decorrelation rates. In the presence of scatterer motion parallel (or 
antiparallel) to the scan bias direction, scatterer velocity along that direction can be inferred 
from the degree of departure from baseline decorrelation rates. Thus, while the form of the 
diffusive term is simplified in Eq. (3) with respect to, for example, Lee, et al. [4], this 
simplification enables important new functionality, that is, the isolation of one specific 
parameter value that is determined on an amplitude (not phase) basis. In principle, if both vx 
and vy were sequentially estimated using scan bias protocols along the x- and y-axes, 
respectively, D could be inferred from residual amplitude decorrelation not otherwise 
attributable to vx and vy. 

Incorporating prior knowledge of vz (e.g. through phase-sensitive Doppler estimation of 
vz) would not change the process for estimating the transverse velocity parallel to the x-axis 
(vx). The estimation process is unchanged because the vx is determined by value of the scan 
bias (vx,scan) that minimizes γ . Here, 1/γ is the intensity decoration time. Since vz is invariant 
with scan velocity, it would not be expected to change the vx,scan at which γ reaches a 
minimum. In Huang, et al. [8], vx was determined by fitting γ versus vx,scan to a parabola and 
finding the minimum of that fit curve. Here, the analogous parabolic relationship is present in 
the numerator of the argument of the Gaussian function in Eq. (3). 

Using CI widths as a metric of estimator precision, we note that the Doppler frequency 
estimates are more precise than decorrelation time-based DLS estimates. The lower precision 
of DLS estimates is consistent with our subjective experience that decorrelation-based 
measurements are more susceptible to uncertainty than Doppler frequency measures are. 
Future studies may focus on understanding why uncertainty is apparently higher with DLS-
OCT than with Doppler OCT. Since decorrelation times have a conjugate bandwidth in the 
Fourier domain, one potential explanation is that first-order moments (Doppler center 
frequencies) are less susceptible to error compared to second-order moments (Doppler 
frequency bandwidth). Our quantitative results are consistent with observations previously 
made by Srinivasan, et al. [5]. 
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